isolated$41062$ - traducción al español
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

isolated$41062$ - traducción al español

THEOREM
Isolated zeros theorem; Isolated zeroes theorem

isolated      
adj. aislado, apartado, cerrado en sí mismo, distanciado, incomunicado, solo; esporádico, fuera del camino
isolation         
WIKIMEDIA DISAMBIGUATION PAGE
Isolated; Isolation (song); Isolating; Isolations; Isolatedness; Isolation (disambiguation); Human isolation; Human isolation (disambiguation); Isolation (album); Isolation (film); User talk:Peytonic1/sandbox
aislamiento
Isolation         
WIKIMEDIA DISAMBIGUATION PAGE
Isolated; Isolation (song); Isolating; Isolations; Isolatedness; Isolation (disambiguation); Human isolation; Human isolation (disambiguation); Isolation (album); Isolation (film); User talk:Peytonic1/sandbox
Aislamiento

Definición

Anencephalous
·adj Without a brain; brainless.

Wikipedia

Identity theorem

In real analysis and complex analysis, branches of mathematics, the identity theorem for analytic functions states: given functions f and g analytic on a domain D (open and connected subset of R {\displaystyle \mathbb {R} } or C {\displaystyle \mathbb {C} } ), if f = g on some S D {\displaystyle S\subseteq D} , where S {\displaystyle S} has an accumulation point, then f = g on D.

Thus an analytic function is completely determined by its values on a single open neighborhood in D, or even a countable subset of D (provided this contains a converging sequence). This is not true in general for real-differentiable functions, even infinitely real-differentiable functions. In comparison, analytic functions are a much more rigid notion. Informally, one sometimes summarizes the theorem by saying analytic functions are "hard" (as opposed to, say, continuous functions which are "soft").

The underpinning fact from which the theorem is established is the expandability of a holomorphic function into its Taylor series.

The connectedness assumption on the domain D is necessary. For example, if D consists of two disjoint open sets, f {\displaystyle f} can be 0 {\displaystyle 0} on one open set, and 1 {\displaystyle 1} on another, while g {\displaystyle g} is 0 {\displaystyle 0} on one, and 2 {\displaystyle 2} on another.